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In two previous papers (Pullin & Grimshaw 1983a, b) we studied the wave profile and 
other properties of finite-amplitude interfacial progressive waves in a two-layer fluid. 
In this and the following paper (Pullin & Grimshaw 1985) we discuss the stability 
of these waves to small perturbations. In this paper we obtain analytical results for 
the long-wavelength modulational instability of small-amplitude w5ves. Using a 
multiscale expansion, we obtain a nonlinear Schrodinger equation coupled to a 
wave-induced mean-flow equation to describe slowly modulated waves. From these 
coupled equations we determine the stability of a plane progressive wave. Our results 
are expressed by determining the instability bands in the (p,q)-plane, where (p ,q)  
is the modulation wavenumber, and are obtained for a range of values of basic density 
ratio and undisturbed layer depths. 

1. Introduction 
It is well known that density-stratified fluids can support the propagation of waves. 

Large-amplitude internal waves are commonly observed on the oceanic pycnocline, 
or on atmospheric inversion layers. These waves have their largest amplitudes in the 
region where the basic density profile changes rapidly. Hence in two previous papers 
(Pullin & Grimshaw 1983a, b) we studied finite-amplitude interfacial progressive 
waves in a two-layer model in which the basic density is constant within each layer, 
but is discontinuous at the interface separating the layers, and in which there is a 
basic linear shear flow in the upper layer. The upper (lower) fluid has density p1 
(p,) and is bounded above (below) by a rigid boundary at a distance d, (d,) from the 
undisturbed interface ; the basic flow in the upper layer is iZl - Ql y. Analytical results 
were obtained for small-amplitude waves from a third-order Stokes expansion. 
Numerical results were obtained for the special case when the lower layer is infinitely 
deep, using the Boussinesq approximation (i.e. the density difference across the 
interface is ignored except in the buoyancy term). It was shown that the wave profile 
is described by a nonlinear integral equation, which was solved numerically for a range 
of wave amplitudes up to the maximum amplitude. 

In this and the following paper (Part 2 - Pullin & Grimshaw 1985) we shall discuss 
the stability of these waves to small perturbations for the case when there is no basic 
shear flow (i.e. iil = a, = 0). Yuen (1983) has studied the stability of interfacial waves 
when there is a basic current jump across the interface (i.e. iZl =# 0, but 52, = 0), and 
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each layer is infinitely deep (i.e. d , ,  d2+oo). The most noticeable difference between 
his results and ours is that, when El =I= 0, there is a short-wavelength Kelvin-Helmholtz 
instability for the undisturbed interface which persists for waves of small amplitude, 
although we note from Yuen’s results that t,he low-order resonance instabilities of 
relatively long wavelength that we discuss below are also present when El =I= 0. In  
this paper we present analytical results for the long-wavelength modulational 
instability of small-amplitude waves, and in Part 2 we present numerical results for 
the instability of finite-amplitude waves for the special case when the lower layer is 
infinitely deep, using the Boussinesq approximation. These numerical results confirm 
that the long-wavelength modulational instability is part of a low-order resonance 
instability and persists for waves of moderate amplitude. In this respect our results 
are analogous to those obtained by McLean et al. (1981) and McLean (1982a, b )  for 
surface gravity waves (i.e. p1 = 0 ) ,  and by Yuen (1983) for interfacial waves on 
infinitely deep layers (i.e. d, ,  d,+co). 

Long-wavelength modulational instability of small-amplitude waves is best dis- 
cussed within the context of the equations that govern slowly modulated small- 
amplitude waves. It has been shown by Grimshaw (1981) that, in general, for waves 
in stratified shear flows the modulation equation, for modulations in the same 
direction as the wave, is the nonlinear Schrodinger equation 

(1.la) 

where 7 = €9, 6 = E ( Z -  Vt). ( l . l b )  

Here q1 is the complex wave amplitude, and to leading order the wavetrain is 
described by q1 exp (ikx- iwt), where w = w ( k ) .  The group velocity is V = aw/ak and 
the coefficient A, = t a V / a k .  The coefficient v of the nonlinear term is determined by 
the interactions of the second harmonic and the wave-induced mean flow with the 
primary wave. The derivation of ( 1 . 1 ~ )  requires that e be a small parameter, and 
describes a balance between nonlinearity and wave dispersion about the dominant 
wavenumber k. It is well known that the nonlinear Schrodinger equation (1.1 a)  is 
a generic equation describing unidirectional wave modulation (see e.g. Benney & 
Newel1 1967; Whitham 1974). I n  particular, i t  has been shown to describe the 
modulation of surface gravity waves (Zakharov 1968; Benney & Roskes 1969). 
Equation (1 .1  a)  has the following plane-wave solution with amplitude A : 

rl = A exp (iv I A 127). 

Re {exp (ST + iPE)), 

(1.2) 

(1.3) 

(1.4) 

When this is subjected to modulational perturbations whose real and imaginary parts 
are proportional to 

then there is a modulational instability whenever A, v > 0, and the growth rate s is 
given by s2 = A,p2(2vIA12-A1p2) 

(see e.g. Davey & Stewartson 1974). There is instability for 0 < p2 < 2vh;l I A 12, with 
a maximum growth rate of EV 1 A l2 a t  Alp2 = v I A 12.  

When modulations transverse to the wave-propagation direction are also allowed, 
the general theory of Grimshaw (1981) shows that (1 .1  a )  is replaced by 

( 1 . 5 ~ )  

where z = €2. (1.5b) 
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Here A, = i V / k ,  and Q is a variable representing that part of the wave-induced mean 
flow which responds to transverse modulations (i.e. to variations in 2). For the 
interfacial waves considered here we shall show that Q satisfies a linear fourth-order 
equation with a forcing term containing derivatives of I 7, 1, (see (3.9a)). The resulting 
pair of equations is analogous to the pair of equations derived by Davey & Stewartson 
(1974) for transverse modulations of surface gravity waves. They reduce to the 
Davey-Stewartson equations when p1 = 0. For modulations in a single direction 
defined by the modulation wavenumber (p, q )  the coupled equations reduce to a single 
nonlinear Schrodinger equation of the same form as (l.la) but with E replaced by 
6, = pE+qZ, A, replaced by A = A, p2 + A, q2 and v replaced by v + E, where E is a 
function of p and q. Instability criterion can now be derived in a manner similar to 
that described above. In particular, the growth rate s.is given by an expression similar 
to (1.4) in which Alp2 is replaced by A and v is replaced by (v + E). Instability now 
occurs for a band in the (p, q)-plane. The main purpose of this paper is to determine 
the configuration of these instability bands as a function of the density ratio p1/p2 
and the non-dimensional depths kd, and kd,. 

The plan of this paper is as follows. In $2 we sketch the derivation of the modulation 
equation, and in $3 we derive the equations governing the wave-induced mean flow. 
Then in 54 we combine these two equations and determine the instability bands. Our 
results are presented, both analytically and graphically, for a range of values of p1/p2 
and kd,, kd,. Finally, in 55 we present a brief discussion of the results. In  particular, 
anticipating the numerical results of Part 2, we show the relationship between the 
modulational instability and an instability deriving from a low-order resonance. 

2. Derivation of the modulation equation 
We consider two incompressible and inviscid fluids separated by the interface 

y = ~ ( x ,  z, t ) .  Gravity acts in the negative y-direction, and the fluid densities are p1 
and p,, with p, > pl ,  where subscripts 1 and 2 refer respectively to fluid properties 
above and below the interface. The fluid is bounded by horizontal planes at y = d ,  
and y = -a2. The basic unperturbed flow has a constant velocity iil in the x-direction 
in the upper layer, 0 G y G  d,,  and a constant velocity ii, in the x-direction 
in the lower layer, - d ,  < y < 0. Although we shall put ii, = ii, = 0 in the subsequent 
application in $4, it is convenient to derive the modulation equations for the general 
case when El, ii, are not zero. The perturbed flow is irrotational with a velocity 
potential $,(z,y,z,t) in the upper layer and $,(x,y,z,t) in the lower layer. The 
perturbed velocity field is then u, = V$j ( j  = 1,2) with components (u,, v,, w,), where 
v1 = 0 at y = d ,  and v, = 0 at y = -a,. It remains to specify the boundary conditions 
at  the interface y = 7. The two kinematic conditions are 

a7 - a7 a7 a7 
at *ax 3ax aZ -+u -+u -+w - = v, (j = 1,2) on y = 7. 

Using the Bernoulli equation for each fluid, the dynamic boundary condition is 

Plane-progressive periodic-wave solutions of (2.1) and (2.2) were discussed by 
Pullin & Grimshaw (1983a,b). Here we propose to discuss slowly modulated 
small-amplitude waves. A general theory for deriving modulation equations for 
stratified shear flows has been described by Grimshaw (1981). Indeed, the modulation 
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equation for the present case could be obtained from the general theory by making 
the appropriate substitutions. However, it is simpler to sketch how the general scheme 
works when applied to (2.1) and (2.2). First we introduce the small parameter e, which 
describes both the slow modulations and the wave amplitude. Next we define the slow 
space and time variables by 

X = EX, Z = €2, T = et, (2.3) 

Modulated waves are then described by an expression of the form 
al 

7 = X ~ l ~ l q ~ ( X , Z ,  T) exp ( i d ) ,  v-n = v:, ( 2 . 4 ~ )  
-al 

where 8 = kx+lz-wt, (2.4b) 

and there are analogous expressions for 4,. Here (k,l) is the wavenumber and w is 
the frequency. Subsequently we assume that the wave is propagating in the x-direction 
and put 1 = 0, but it is convenient to retain 1 for the present development. After 
satisfying Laplace’s equation in each fluid, the boundary conditions at y = d,, -d, 
and the boundary conditions (2.1) and (2.2) at the interface, it may be shown that 
(see Grimshaw 1981) 

eD(Q,k,t)v,+N, = 0, ( 2 . 5 ~ )  

where 

a a Z = I-iea. a 
aT’ ax’ Q = w+ie- f = k-ie- 

(2.5b) 

( 2 . 5 ~ )  

Here Nl 
required 

It can 

represents nonlinear terms. When these have been specified, ( 2 . 5 ~ )  is the 
modulation equation. 
be shown that the nonlinear term N ,  is O(e3).  Hence, to leading order in e, 

( 2 . 5 ~ )  reduces to D(w, k, I) = 0, which is just the dispersion relation for a linear plane 
progressive wave. Expanding the operator D(Q, k, t ) in powers of E ,  it is readily shown 
that, to leading order, modulations propagate with the group velocity ( V ,  W), where 

In order to continue the expansion to O(e3) we introduce the long-time variable 

7 = eT = e2t. (2.7) 

We shall also now suppose that 1 = 0 and the wave is propagating in the x-direction ; 
it follows that W = 0. It is convenient to choose a frame of reference moving with 
the group velocity, and hence we put 

6 = X- VT, (2.8) 

and seek solutions of ( 2 . 5 ~ )  for which 7, = T~(E,Z, 7 ) .  It can be shown that ( 2 . 5 ~ )  
becomes, to O(e3),  
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Here we recall that the coefficients D etc. are evaluated a t  1 = 0. For future use we 
note that, at 1 = 0, 

aw v i -- (2.10) 

Here the partial derivates of D with respect to a, are obtained from (2.5b), keeping 
w ,  k and 1 and all other parameters fixed. 

From the general theory of Grimshaw (1981) the nonlinear term Nl is made up of 
two parts. One part contains the interaction of the second harmonic (i.e. terms such 
as v2)  with the primary harmonic q,, together with the cubic interactions of vl; it 
is identical with the same term that arises in the Stokes expansion for a plane 
progressive wave and will be denoted by N y ) .  The other part contains the interactions 
of the wave-induced mean flow (i.e. terms such as vo) with the primary harmonic q,, 
and will be denoted by NiO). We find that, to O($) ,  

N ,  = €3(Ny) + N y  ), (2.1 1 a)  

where (2.11 b) 

(2.11c) 

Here u$-" (j = 1,2) are the O(e2) wave-induced mean velocities in the z-direction, and 
we have replaced v0 by c2q0. The coefficient v2 in @ . l i b ) ,  being identical with that 
in the Stokes expansion, was obtained by Pullin & Grimshaw (1983~) .  For convenience 
we quote the result here: 

[p2(c- a2)2 (3s: - 1)  -pl(c- a,)* (3s; - 1)]2 
v2 = k' 

where S, = cothkd, (j  = 1,2), w = kc. (2.12b) 

The modulation equation is obtained by substituting (2.11 a-c) into (2.9). To complete 
it, we must obtain the equations determining the wave-induced mean flow vo, uil) 
and up). This aspect is discussed in $3. 

3. Wave-induced mean flow 
The mean-flow equations are those for the n = 0 components in the expansions 

(2 .4a,  b). They are most readily obtained by averaging (2.1) and (2.2) over the phase 0.  
First, however, we note that, since #g) (X ,  2, T; y) satisfies Laplace's equation, 

$!) = e@;)(X,  2, T) + O(s3) ,  ( 3 . 1 ~ )  

(3.lb) 

Here, in (3.lb), O(e2) error terms have been omitted; note that the wave-induced 
velocities uf) and wf)  are independent of y to leading order. Averaging the kinematic 
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boundary conditions yields the equations 
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( 3 . 2 ~ )  

where (3.2b) 

( 3 . 2 ~ )  

Here we have omitted error terms O(e2), and the alternate signs refer to j = 1,  2. 
Averaging the dynamic boundary condition gives the equation, correct to O(e2), 

where (3.3b) 

The mean-flow equations are thus ( 3 . 2 ~ )  and ( 3 . 3 ~ )  for the mean-flow variables qo 
and Gf). 

To make further progress we now put I = 0 and note that then G f )  ( 3 . 2 ~ )  vanishes. 
To leading order in e the forcing terms in ( 3 . 2 ~ )  and ( 3 . 3 ~ )  are functions of 6 = X- V T  
alone (see (2.8)), and hence we may findthe forcedsolution byputtinga/aT = - V a/aX 
in ( 3 . 2 ~ )  and ( 3 . 3 ~ ) .  The free solutions of (3 .24  and ( 3 . 3 ~ )  are linear long waves which 
propagate at the linear long-wave phase speed c,, which satisfies (2.11) in the limit 
k+O (i.e. D(kco, k ,O)+O as k+O). Since we shall assume that there is no long-wave 
resonance (i.e. co + V), which is the case for all k when U1 = U,  = 0, these free long 
waves will separate from the wave modulations, which propagate at speed V ,  and 
will be ignored henceforth. Next we put 

Recalling that a/aT = - V a / a X ,  we find that ( 3 . 2 ~ )  then becomes 

Further, on substituting (3.4) into (3.3a), we find that 

Do( V )  go +pa( U2 - V )  iip) - pl( U1 - V )  ac) = 0, ( 3 . 6 ~ )  

where (3.6b) 

( 3 . 6 ~ )  

P2 U - V ) 2 - 4  (U1-  V)2. (3.6d) 

Note that Do( V )  is the limit as k+O of D(kV, k ,  0) and does not vanish, since co =b V .  
Eliminating wf) from (3.5), we find that 

dl 
DO(V = (P,-P,)S-;i- ( 2 

2 
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Finally, substituting (3.4) and (3.6b) into (2.11c), we find that 

NiO) = vo I r ] ,  l2 r ] ,  + flp, ( 3 . 8 ~ )  

where 
1 (aD)2 1 (aD)2 

v o = - - - -  - -- - 9 

Do P l d ,  3% P2d2 au, 
(3.8b) 

= 0, Qq,, ( 3 . 8 ~ )  

(3.8d) 

Thus the nonlinear term N ,  (2.11a) in the modulation equation has been reduced to 
cubic terms in r ] ,  alone, and mio), which is related to r ] ,  by (3.8c, d )  and the long-wave 
equations ( 3 . 6 ~ )  and (3.7). In  these latter equations the only forcing term is the 
transverse derivative (i.e. the Z-derivative) of I r ] ,  12.  The manipulations described 
above have removed the forcing terms due to modulations in the X-direction; their 
effect now appears in the coefficient vo (3.8b) which is always negative. By cross- 
differentiation between (3.68) and (3.7), we can obtain the following equation for Q 
alone : 

( 3 . 9 ~ )  

DO DO 
where 

(3.9c) 

Note that both p ,  and ,us are positive and satisfy the following relation, which is useful 
for subsequent computations : 

4. Modulational instability 
The modulation equation is thus (2.9), where the nonlinear term 

(2.11a,b) and (3.8a,c). It is coupled to the mean-flow equation 

(3.10) 

N ,  is given by 
for &, ( 3 . 9 ~ ) .  

Henceforth we shall put 6, = Ea = 0 and assume that the wave is propagating to the 
right, so that c, V > 0. The modulation equation then becomes (1 .5~) .  For the 
convenience of the reader we reproduce that equation here, and note that the 
coefficients A,, A,  can be identified from (2.9) and (2.10): 

(4.la) 

where D,v = v2+vo, (4.1 b)  

1 av V 
A , = -  

2k' (4.1 c) 

Here we recall that v2 is defined by ( 2 . 1 2 ~ )  and vo by (3.8b). If we put p, = 0, then 
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(4.1 a) and ( 3 . 9 ~ )  reduce to the Davey-Stewartson equations for the modulation of 
a surface gravity wave (Davey & Stewartson 1974). In  order to use ( 4 . 1 ~ )  and ( 3 . 9 ~ )  
to describe modulational instability, we first seek solutions corresponding to 
modulations in a single direction specified by the modulation wavenumber (p, q). Thus 
we put 

El = pE+qZ 

and seek solutions for which 7, and Q are functions of T and El only. We find from 
( 3 . 9 ~ )  that Q = $ 1  71 1 2 ,  (4.3a) 

where (4.3b) 

Substituting ( 4 . 2 ~ )  and ( 4 . 3 ~ )  into (4.1 a), we obtain the nonlinear Schrodinger 

ow@2 + q2) (Do P2 + S(P2 - P1) q2)  v̂  = q 2 ( Q  + !I2) +P2 !I2). 

equation 
(4.4a) 

where A = A1p2+A2q2. (4.4b) 

The modulational instability is now found by perturbing the plane-wave solution 
of ( 4 . 4 ~ ) .  For modulations in the wave direction the results are described by (1.2), 
(1.3) and (1.4). When the modulation is transverse (q + 0) the necessary modifications 
have been described in $1, and for the convenience of the reader are described below. 
The plane-wave solution of ( 4 . 4 ~ )  is 

ql = A  exp(i(v+v^)IA127). (4.5) 

When q = 0, so that v̂  = 0, this is just the plane progressive wave. When this is 
subjected to modulational perturbations whose real and imaginary parts are pro- 
portional to 

then there is modulational instability whenever A(v+v^) > 0, and the growth rate s 
is given by 

(4.7) 

The stability boundaries in the (p, 9)-plane are given by A = 0 and A = 2(v+ v^) I A 12, 
while the maximum growth rate is ( v +  1’) I A l2 and occurs at A = (u+ 1’) I A 12. Since 
s (4.7) is symmetric in p and q, it  is sufficient to consider the quadrant p 2 0, q 3 0. 
We note here that A, < 0 and A, > 0, so that the boundary A = 0 is a straight line 
through the origin in the (p,q)-plane. Also D, < 0 and uo < 0 (3.8b); however, v2 
(2 .12~)  can take either sign. Thus, although u is independent of p and q, it can take 
either sign. On the other hand, although v^ (4.3b) depends on p and q, v^ < 0, since 
0, < 0, Do > 0 (3.6d), and p1 (3.9b) and p2 ( 3 . 9 ~ )  are both positive. The various 
combinations of signs lead to four possible configurations for the instability bands in 
the (p, q)-plane. These are shown in figure 1. If u < 0 then the configuration is similar 
to that for deep-water surface gravity waves and is shown in figure 1 (a). If v > 0 but 
(v+v^) < 0 when p = 0 then the configuration is either that of figure 1 (b) or (c); 
figure 1 (b) occurs when the zero of u+ v^ as a function of the slope q / p  leads to a slope 
less than that defined by A = 0, while figure 1 (c) occurs in the contrary case. If v = 0 
and v+ v^ > 0 when p = 0 then the configuration is that of figure 1 (d), since it can 
be shown that now v+v^, considered as a function of the slope q / p  has no zeros. 
Hereinafter we shall refer to these diagrams as case A, B, C or D respectively. Cases 
A, B and C all occur for surface gravity waves (i.e. p1 = 0, see Benney & Roskes 1969). 

Re {exp (m+ itl)}, (4.6) 

8 2  = A(2(v+ 0) I A 1 2 - A ) .  
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FIQTJRE 1. Configuration of instability bands in (P,  &)-plane for modulational instability of 
interfacial waves. Shaded regions ere unstable bands; the A = 0 boundary is as indicated. 
(a) Case A; (b)  B; (c) C; (d) D. 

Of the various possibilities shown in figure 1, the instability configuration that 
actually occurs depends on the dimensionless parameters kdl,  kd, and p1/p2. Consider 
first the case when kdl, kd,+oo, which is analogous to deep-water surface gravity 
waves. We fmd that 

(4.8a) 

(4.8b) 

Hence the instability boundary A = 0 is just p = &q. Further, qo and uf)+O as kdl, 
kd2+co, so that uo = 0 and v^ = 0, while u is given by 

(4.9) 

The other instability boundary is thus A = 2ul A l2 and is a hyperbola in the 
(p, q)-plane. The instability configuration is case A, which is shown in figure 1 (a).  

Next, consider the opposite limit of shallow-water interfacial waves when kdl,  
kd2-t0. (Strictly speaking, the modulation equations are only valid in this limit when 
8 -4 (kdl) , ,  (kd2)2, and hence restricted to very small amplitudes.) In this limit c,  V+co,  
where the long-wave phase speed is given by 

d P 2  - P1) 
c2 - 

O - Pl/dl+ P 2 P 2  * 
(4.10) 
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Also, we find that 
A, = -?jkco P2 dl +PZd, , A ' = %  CO 

Pl ldl+ P 2 / 4  
(4.11) 

I n  the shallow-water limit i t  is generally true that v2 = -tvo (Grimshaw 1981,1982), 
and hence there is stability to  modulations in the wave direction (q = 0). We find that 

(P, /d:-  Plld:)2 (4.12) 
9c v = o  
4k (P1 dl +PZd2) (Pl ldl  +PZld,) * 

Further, we find that in this limit 

Do( V )  = k2C3P, d ,  + Pz dz), (4.13) 

while Dopl  9 p2. Evaluating p l  from (3.9b) and substituting into (4.3b), we find that 

(4.14) 

Thus the instability boundaries h = 0 and h = 2(v+ v^) 1 A l2 collapse into the same 
straight line, which lies very close to the p-axis. However, the growth rate s tends 
to  zero in this limit. The instability configuration is either case B or case C, where 
in the limit the two boundaries have coalesced. We conclude that shallow-water 
interfacial waves are modulationally stable, except possibly for wavenumbers (p, q)  
that  lie close to the line h = 0. This case is analogous to shallow-water surface gravity 
waves. Note that when p, d: = p2 d:, v and v^ vanish in this approximation ; to obtain 
the instability configuration higher-order terms must be calculated. Our numerical 
results, which are described below, indicate that the instability configuration is 
case D when p2 d: = p1 d:. 

Next we consider the case when the upper layer is deep and the lower layer is 
shallow, corresponding to  the limits kd, +m, followed by kd, + O .  (Strictly speaking, 
the modulation equations are only valid in this limit when E 4 (kd,) ,  and hence 
restricted to very small amplitudes.) In  this limit the phase speed and group velocity 
are given by 

Further, we find that hl x -+c0 P 3 d,,  A, x 3, CO 
P1 

while 
13 p2 

Do( V )  x g(p2 - p l )  { 2 fi kd, + k2d: (1 -- A)}. 
P1 4 P? 

Evaluating v, from ( 2 . 1 2 ~ )  and vo from (3.8b), we find that 

( 4 . 1 5 ~ )  

(4.15b) 

(4.15~) 

( 4 . 1 6 ~ )  

(4.16b) 

( 4 . 1 7 ~ )  

(4.17 b) 
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Note that to leading order v2 = -vo, a result that is generally true in this limit 
(Grimshaw 1982). Thus stability to modulations in the wave direction (q  = 0) is not 
determined by the leading-order terms in v2 and vo, and hence we have included the 
O(kd,) correction terms in (4 .17a,  b). From (4.1 b) we find that 

vz---( 9 kc, p1 p1 I 31 p2 ). 
8 d: P2 P2 12Pl 

(4 .18)  

Here, v > 0 and there is modulational stability in the wave direction (q = 0). 
Evaluating y1 and y, from (3.9b, c ) ,  we find that y2+0 and v^ (4 .3b)  is given by 

(4.19) 

Thus the instability configuration is case B, where the instability boundaries h = 0 
and h = 2(v+ G) I A 1, both lie very close to the p-axis. Unlike the shallow-water limit, 
the instability boundaries remain distinct and the growth rate s is not zero. 

Another case that lends itself to some analytical simplification is d ,  = d ,  in the 
Boussinesq approximation, when p1 = p2 except in the combination g(p2-p , ) .  In  this 
case we find that 

Evaluating v from ( 4 . l b )  using ( 2 . 1 2 ~ )  and (3 .8b) ,  we find that 

(4.20 a) 

(4.20b) 

(4.21) 

In this special case 1, = 0, and hence it follows from (3 .9b,  c )  that p2 = 2p1 Vzy, dL1, 
with the consequence that v  ̂ (4 .3b)  is given by 

II 2ck3S q2 v = -1- 
kd, p2+q2'  

(4.22) 

From these expressions for v and v^ it is readily shown that as kd, is decreased there 
is a transition from case A to case B when kd, = 2.17 (i.e. when v vanishes), to case C 
when kd, = 1.51, and finally to  case D when kd, = 0.88 (i.e. when v +  v^ vanishes 
forp = 0, or when S: = 2 ) .  The instability configuration remains in case D as kdl+O. 
This result should be contrasted with the results obtained above when kd,, kd2+0,  
where the instability configuration is case B or C provided pad? =I= p ,  d:. 

To obtain more information on the instability configuration as a function of the 
dimensionless parameters kd,, kd, and p1/p2 ,  we have evaluated the stability 
boundaries h = 0 and h = 2(v+v^) J A  l2 numerically. In  order to facilitate com- 
parison with the results of Part 2 ,  these numerical results are presented in non- 
dimensional form, based on the lengthscale h/x and timescale (h/xorg)i, where 
a = ( p z - p 1 ) / ( p 2 + p 1 )  is the Boussinesq parameter. Here A is the wavelength 2xk-l .  
The dimensionless parameters are now D,, = ikd,, and a ; the Boussinesq limit is 
a+O, while when a + l  we obtain the known results for a surface gravity wave 
(Benney k Roskes 1969; Hayes 1973; Davey & Stewartson 1974). All our results are 
displayed as graphs of the instability band in the (P,&)-plane, with growth rates 
superimposed at  selected values of P and Q ; here P and & are the non-dimensional 
variables 2epk-1 and 2~qk-' respectively. The non-dimensional growth rate is 
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FIGURE 2. Stability boundaries and superposed growth rates (at Q = constant), a = 0, Dz+co. (a) 
D, = x [A]; (b )  0.225n [B]; (c) 0 . 1 ~  [C]; ( d )  0.025~ [B]. Letters in square brackets refer to the 
instability-band configurations in figure 1. 

S = e2.g($kagg)-t. Further, it is apparent from the expressions (4.3b), (4.4b) and (4.7) 
that P and & scale with the non-dimensional amplitude 6 = sk I A 1 ,  while the growth 
rate S scales with 6,. Hence our results are expressed in units of Pa-', QS-l and S F 2 ,  
and for all the results shown the same scale is used. 

In figure 2 we show the results when a = 0 and D,+oo. This is the case discussed 
in Part 2, where we obtain the instability configuration for a range of wave amplitudes 
13 and modulation wavenumbers P, Q, thus extending the results obtained here, which 
are valid in the limit 6+0 and P, & + O .  The results are shown for a range of values 
of D, ; as D, is decreased the instability configuration passes from case A to B when 
D, = 0.75, to case C when D, = 0.60, and returns to case B when D, = 0.10. The 
growth rates initially decrease with D,, but later increase as D,+O. Note that case A 
shown in figure 2(a) is qualitatively similar to the deep-water limit D,, D,+oo 
discussed above (see the discussion following (4.9)). Also case B shown in figure 2 (d) 
is qualitatively similar to the limit D ,  +a, D,+O discussed above (see the discussion 
following (4.19)). 

In figure 3 we show the results when a = 0 and D2/x  = 0.1 for a range of values 
of D, in order to give an indication of the effect of decreasing D, on the results shown 
in figure 2. In contrast with the case D,+m the instability is always transverse (i.e. 
there is no case A, which is the only case giving an instability in the wave direction). 
As D, is decreased the instability configuration passes from case C to D when 
D, = 0.42, returns to C when D,  = 0.23, and finally becomes case B when D, = 0.04. 
The growth rates reach their maximum when D, x D, and decrease as D, + O .  Note 
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FIGURE 3. Stability boundaries and superposed growth rates (at Q = constant), a = 0, 
D, = 0 . 1 ~ .  (a) D, = x [C]; ( b )  0 . 1 ~  [D]; (c) 0 . 0 3 ~  [C]; (d )  0 . 0 1 ~  [B]. 

that case D in figure 3(b) is described by the analytical results above (see the 
discussion following (4.22)). 

In figure 4 we show the results when a = 0.5 and D,/n = 1.0 for a range of values 
of D,. Since the results for D,+oo are similar to these, they provide an indication 
of the effect of increasing a on the results shown in figure 2. Overall the results are 
qualitatively similar to those shown in figure 2 ;  in particular, the growth rates 
initially decrease with D, but later increase as D, is further decreased. The instability 
configuration is initially that for case A, but changes to case B when D,  is decreased 
through the value D, = 0.55, to case C when D, = 0.47, and then to case D when 
D, = 0.27. This latter case is not present when D,+oo. Not shown in figure 4 are two 
further transitions to case C when D,  = 0.20 and finally to case B when D, = 0.04. 
Note that case A shown in figure 4 (a) is essentially that of the deep-water limit D,, 
D,+m as discussed above (following (4.9)), while the final case B is essentially that 
for the limit D,+m, D,+O discussed above (following (4.19)). 

In  figure 5 we show the results when a = 0.9976 and D,-+oo, corresponding to an 
air-water interface with the upper fluid infinitely deep. These results, for a range of 
D,, should be compared to the known results for a surface gravity wave (Benney & 
Roskes 1969; Hayes 1973; Davey & Stewartson 1974). Except for very small values 
of D,, the results are very similar. As D, decreases, the growth rates decrease and 
the instability configuration passes from case A to case B when D, = 0.69, and then 
to case C when D, = 0.19. The corresponding transitions for a surface gravity wave 
are D, = 0.68 and D, = 0.19. Note that case A shown in figure 5 ( a )  is for D,+m and 
is discussed above (following (4.9)). However, for the aipwater interface there is a 
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FIGURE 4. Stability boundaries and superposed growth rates (at Q = constant), a = 0.5, D, = R. 
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FIGURE 6. Instability regions in (Dl ,  &!-plane. (a) a = 0 ;  (b)  0.5; (c) 0.95; ( d )  0.9976. Capital letters 
refer to the instability-band configurations of figure 1.  The basic wave is modulationally stable on 
a B-C boundary. ---, A-B transition (a = 1 ) ;  * * * * ,  B-C transition (a = 1) .  
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further transition from case C to case B when D, = 0.09, with a slight increase in 
growth rate (see figure 5 d ) .  This transition is not present for surface gravity waves. 
Its presence can be deduced, however, from the limit D,-+a, D,+O, which is 
analogous to the limit D,+oo, D1+O discussed above (following (4.19)). From the 
results of this latter case it follows that when Dl+oo, D,+O the instability 
configuration is case B with finite growth rates for all non-zero values ofp, (i.e. a =I= 1). 
It follows that for surface gravity waves in very shallow water modulational 
instability is affected by the presence of the air above the fluid interface. 

Many similar plots to those shown in figures 2-5 can be obtained. To provide an 
overview of these results as a function of the three parameters D,, D, and a we show 
in figure 6 a plot of the instability case (A, B, C or D) as a function of D, and D, 
for various values of a. In  interpreting these plots it is useful to recall the analytical 
results discussed above. In  particular, D,, D,+a produce case A, while D,, D,+O 
produce case B or case C provided p, dt =# p, dt .  The limits D, +a, D, -+ 0 or D, +oo , 
Dz+O produce case B, while the case a = 0, D, = D, gives a transition from A to 
B, to C and finally to D as D, is decreased. In figure 6(a) we show the case a = 0, 
which is symmetric about D, = D,. When D,, D, both become large the instability 
configuration is case A and there is instability along the wave direction. As either 
D, or D, is decreased there is a transition to a transverse instability. Particularly 
interesting is the presence of a case-D region along the (D,--,)-axis, as case D 
includes a completely transverse instability, which does not occur for surface gravity 
waves. When a is increased the picture alters to that shown in figure 6 ( b )  for a = 0.5. 
The most significant change is the position of the case-D region. The consequences 
of further increases in a are shown in figure 6 (c) for a = 0.95 and 6 ( d )  for a = 0.9976 
(corresponding to an air-water interface). Note that the case-D region continues 60 
move to the upper left-hand corner where D, is small and D, is large, while the case-C 
region at first contracts to the right where D, is small, but then expands to the left 
where D, is large. The overall picture is not very sensitive to the value of a when 
a is small, but is extremely sensitive to the value of a as a+ 1. When a = 1 the picture 
is that for surface gravity waves and consists of a transition from case A to case B 
at D, = 0.68 and from case B to case C at D, = 0.19 with no dependence on D,. These 
asymptotic limits are indicated on figure 6 ( d ) ,  where a = 0.9976. It is apparent that 
for small D,, and also for small D,, there are significant differences from the case a = 1 .  

5. Discussion 
Our results in $4 show that a long-wavelength modulational instability exists for 

all values of the parameters a (i.e. (p2-p1) / (p2+p1))  and kd,, kd,. The instability 
occurs within an instability band in the (P ,  &)-plane where ( P ,  &) is the non-dimensional 
modulation wavenumber. The analysis is restricted to small-amplitude waves and 
assumes that P ,  & are O(S), where S is the non-dimensional measure of wave 
amplitude. The corresponding growth rates are O(S2) and the bandwidth is O(S). The 
instability bands can be classified into the four cases shown in figure 1. The most 
notable distinction is between case A, which allows for an instability in the wave 
direction, and the remaining cases B, C and D, which allow only a transverse 
instability (i.e. & =+ 0). 

In  part 2 we present numerical results for the linearized stability of kite-amplitude 
waves for the special case a = 0 and kd,+oo. For this special case the numerical 
results extend and complement the analytical results obtained here. One of the main 
results obtained in Part 2 is that for small or moderate wave amplitudes the 
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modulational instability is part of a low-order resonance instability. This connection 
has been established for surface gravity waves by McLean et al. (1981), and is 
probably so for all cases of modulational instability discussed in this paper. For 
instance Yuen (1983) has obtained the same connection for the case when each layer 
is infinitely deep (d,, d,+oo) and the density ratio p1/p2 is either 0.1 or 0.9. To 
demonstrate the generality of the connection, let w(k)  be the linear dispersion relation 
for the wave whose stability is being examined. Here k = ( k ,  1 )  is the wavenumber, 
and w ( k )  satisfies D(w, k, 1 )  = 0 (see ( 2 . 5 b ) ) .  For 6 z 0 this wave will be unstable owing 
to a resonant interaction with two other waves with wavenumbers k,,  k,  and 
frequencies w1 = w(k,),  w2 = w(k,) whenever 

k, -k ,  = K k ,  w,-o, = N U .  (5.1) 

Here N is a positive integer and defines the order of the resonance. We expect the 
growth rates of the instability to be 0 ( d N ) .  When N = 1 the resonance condition (5.1) 
describes a triad resonance. However, for the interfacial waves being considered here 
it can be shown that there are no resonant triads. The argument is similar to that 
used for surface gravity waves (see Phillips 1960) and is based on the fact that the 
group velocity V is always less than the phase velocity c in absolute value. 

The resonance condition (5.1) can be met for N 2 2. In particular, the N = 2 
resonance exists, and corresponds to a quartet resonance. For the special case 
discussed in Part 2 the locus of wavenumbers k,  that satisfy (5.1) for a fixed k can 
be shown to form a figure-of-eight (see figure 1 of Part 2). Further, the N = 2 
resonance contains the modulational instability in the following sense. Let k = ( k ,  0) 
and k,  = k( 1 +if', @), k,  = k( - 1 +if', @) and note that P = 2 ~ p k - l  and Q = 2eqk-'. 
Here E is a small parameter measuring the magnitude of the modulation wavenumber. 
For small s the resonance condition (5. 1 )  for N = 2 is approximately given by, to 0 ( e 2 ) ,  

A,p2+A2q2 = 0, (5.2) 

where A,, , are defined by (4.1 c). From (4.4b) we see that (5.2) is equivalent to h = 0, 
and thus coincides with one of the modulational instability boundaries. Of course, 
the resonance condition (5.1) is exact only for 6 = 0. For small but finite 6 the 
resonance instability develops a finite bandwidth in the (P, &)-plane, but closely 
follows the curve defined by (5.1). Further, near the origin of the (P,Q)-plane (i.e. 
as s+O) the resonance instability for N = 2 can be identified with the modulational 
instability. Our results in Part 2 show that for the case a = 0 and kd,+Oo the 
higher-order resonances ( N  2 3) also occur, but that for small or moderate amplitudes 
the dominant instability is that corresponding to N = 2. 
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